Skip to content

Zone d’entraide

Question de l’élève

Secondaire 4 • 3a

Bonjour,

Est-ce que dans le cas d'isométrie ACA, il doit y'avoir la même mesure d'angles et est-ce que c'est quand même un cas d'isométrie s'il manque une mesure d'angle?

Merci

Mathématiques
avatar
avatar

Éditeur de texte riche.Pour modifier le style d'un paragraphe, cliquez sur l'onglet pour aller dans le menu de paragraphe. De là, vous pourrez choisir un style. Rien conserve le paragraphe par défaut.Un menu de formatage en ligne s'affichera quand vous sélectionnez le texte. Cliquez sur l'onglet pour rentrer dans ce menu.Certains éléments, tels que les codes d'intégration, les images, les indicateurs de chargement et les messages d'erreurs peuvent êtres insérés dans l'éditeur. Vous pouvez naviguer dessus en utilisant les flèches du clavier au sein de l'éditeur et les supprimer avec la touche supprimer ou la touche retour.


Explications (5)

  • Explication d'Alloprof

    Explication d'Alloprof

    Cette explication a été donnée par un membre de l'équipe d'Alloprof.

    Options
    Équipe Alloprof • 3a

    Salut :D

    Pour le cas ACA, les deux angles doivent être les mêmes et emprisonner le côté isométrique dans le milieu.

    Pour plus d'exemples, consulte cette fiche. Elle pourra t'aider.

    Passe une belle soirée :) N'hésite pas si tu as d'autres questions :)

  • Explication d'un(e) pro de la Zone d'entraide Explication d'un(e) Pro

    Explication d'un(e) pro de la Zone d'entraide

    Tu peux faire confiance à cette explication, car elle est donnée par une personne identifiée comme étant fiable par Alloprof.

    Options
    Pro de la zone d’entraide • 3a February 2022 modifié

    Salut !


    Puisque la somme des mesures des angles intérieurs d'un triangle vaut 180°, si tu as deux paires d'angles isométriques, alors tu peux déduire que la troisième paire aussi sera isométrique (la mesure du troisième angle correspond à 180° moins la mesure des deux autres).


    Comme d'autres l'ont dit avant, le côté isométrique dans les deux triangles doit nécessairement être coincé entre des paires d'angles isométriques pour obtenir le cas ACA.


    Ex : ABC. mB=45, mC=100, mBC=10

    et

    DEF. mD=35, mE=45, mEF=10

    sont nécessairement isométriques. La mesure de l'angle F est mF=1803545=100. Dans le triangle DEF, le côté EF de 10 unités est coincé entre les angles de 45 et 100. Dans le triangle ABC, le côté BC de 10 unités est coincé entre les angles de 45 et 100. Ainsi, ABCDEF par ACA.


    Par contre,

    ABC mA=35, mB=45, mC=100, mBC=10

    et

    DEF mD=35, mE=45, mF=100, mDF=10

    ne sont pas nécessairement isométriques parce que dans le triangle ABC, le côté BC de 10 unités est coincé entre les angles de 45 et 100 alors que dans le triangle DEF, le côté DF de 10 unités est coincé entre les angles de 35 et 100. Les trois paires d'angles sont pareils, mais il n'y a pas nécessairement de cas d'isométrie...


    En espérant le tout plus clair !


    Au plaisir !

  • Options
    Postsecondaire • 3a

    Il faut absolument retrouver consécutivement l’angle 1, le côté et l’angle 2. Si il manque un élément du ACA, c’est sûrement pas un cas isométrique.

  • Options
    Postsecondaire • 3a

    pour ta première question, oui.

    deuxième question, s'il y a un côté de même longuer pour les deux, entre les deux angles

  • Options
    Primaire 5 • 3a

    L’entrée au secondaire peut représenter une source de stress pour les jeunes qui franchissent cette étape importante. Une nouvelle école, un nouvel horaire, des nouveaux amis… beaucoup de changements à vivre en quelques semaines! Voici donc une liste de trucs utiles pour les jeunes pour un début d’année tout en douceur.

    1-ORGANISER SON TEMPS

    L’organisation est définitivement la clef pour un début d'année bien réussi. Pour bien organiser son temps, une montre est un élément indispensable. Organiser son temps, c’est aussi bien prévoir sa journée la veille : prévoir ses vêtements et son sac, comprendre son horaire, identifier les périodes pour les pauses-pipi et, pourquoi pas, pratiquer l’ouverture et la fermeture de son cadenas. Il est aussi possible de se procurer un calendrier de bonne grandeur et d'y inscrire les délais de remise de travaux/devoirs. Les jeunes peuvent faire un trait quelques jours avant la date de remise: 

    • Vert une semaine avant;
    • Jaune trois jours avant;
    • Rouge une journée avant la remise.


Poser une question