Secondaire 1 • 2a
comment d’écrire une rotation équivalente de même centre que celle donné mais de sens inverse. Par exemple, pour une rotation de -45 degré la réponse serait de 315. Pour une rotation de 180 degré, la réponse serait -180. Mais pour une rotation de 750.. on fait comment?
Explication d'Alloprof
Cette explication a été donnée par un membre de l'équipe d'Alloprof.
Salut!
D'abord, pour trouver ce à quoi -45° équivaut, on doit soustraire cet angle de 360°. Ainsi, 360°-45°=315°. On sait donc que -45°=315°.
Pour un angle supérieur à 360°, on trouve d'abord combien de tours complets on effectue, c'est-à-dire combien de fois on peut soustraire 360° de l'angle. Ainsi, pour un angle de 750°, on fait 2 tours complets, et il nous reste 30 degrés (750°-360°=390°-360°=30°).
Si on veut exprimer cet angle en sens inverse, on le soustrait donc de 360° et on rajoute un signe négatif : 30°=-330°.
Ainsi, 750° = 2 tours de 360° + 30° = 2 tours de 360° + -330° = -1050°
Voici une fiche sur cette notion qui pourrait t'être utile :
https://www.alloprof.qc.ca/fr/eleves/bv/mathematiques/les-angles-trigonometriques-radians-m1469
J'espère que cela répond à ta question :)
Suggestions en lien avec la question
Suggestion en lien avec la question
Voici ce qui a été trouvé automatiquement sur le site, en espérant que ça t’aide!