Ce contenu est protégé par le droit d'auteur. Toute reproduction à l'extérieur des forums Alloprof est interdite et pourra être considérée comme une violation du droit d'auteur.
Tu as l'air d'avoir compris la base de l'exercice, à savoir la concentration est le fait de devoir trouver une fonction qui décrit la quantité totale et un qui décrit la quantité d'une espèce. Pour les bases, tu peux toujours visiter cette fiche alloprof :
Cependant, ton cas est plus poussé et demande de trouver la règle de deux fonction affine de forme \(y=ax+b\). les termes \(a\) et \(b\) sont assez facile à trouver. \(x\) est le temps et \(y\) est la quantité en volume des espèces. Il est toujours bien de définir les variables.
\(a\) est le taux de variation, c'est-à-dire la vitesse du versement de liquide et \(b\) est la quantité initiale de liquide. Par exemple, la règle de la fonction pour le liquide A est la suivante :
$$ f_A(x)=2x+15 $$
Je te laisse trouver le dénominateur par toi-même et 50% de A signifie \(f(x)=0,5\).
Si tu as d'autres questions, n'hésite pas !
1
Suggestions en lien avec la question
Suggestion en lien avec la question
Voici ce qui a été trouvé automatiquement sur le site, en espérant que ça t’aide!
Explication d'Alloprof
Cette explication a été donnée par un membre de l'équipe d'Alloprof.
Salut !
Tu as l'air d'avoir compris la base de l'exercice, à savoir la concentration est le fait de devoir trouver une fonction qui décrit la quantité totale et un qui décrit la quantité d'une espèce. Pour les bases, tu peux toujours visiter cette fiche alloprof :
Cependant, ton cas est plus poussé et demande de trouver la règle de deux fonction affine de forme \(y=ax+b\). les termes \(a\) et \(b\) sont assez facile à trouver. \(x\) est le temps et \(y\) est la quantité en volume des espèces. Il est toujours bien de définir les variables.
\(a\) est le taux de variation, c'est-à-dire la vitesse du versement de liquide et \(b\) est la quantité initiale de liquide. Par exemple, la règle de la fonction pour le liquide A est la suivante :
$$ f_A(x)=2x+15 $$
Je te laisse trouver le dénominateur par toi-même et 50% de A signifie \(f(x)=0,5\).
Si tu as d'autres questions, n'hésite pas !
Suggestions en lien avec la question
Suggestion en lien avec la question
Voici ce qui a été trouvé automatiquement sur le site, en espérant que ça t’aide!