Skip to content

Zone d’entraide

Question de l’élève

Primaire 5 • 2a

bonjour, j'ai une situation problème qui est la suivante :

" parcours du 3e cycle et parcours sport étude" :

  1. lorsquils sont collés ensemble les deux parcours forment un rectangle
  2. sur le plan chacun des côtés du rectanble formé doit mesurer entre 8cm et 10cm
  3. lorsqu'on multiplie la longueur et la largeur du rectangle, on obtient un nombre divisible par 10.

***

262687446_887263181952948_454086825801615999_n.jpg

on traite ce problème comment ? je n'arrive pas à comprendre comment aider mon enfant.

merci

Mathématiques
avatar
avatar

{t c="richEditor.description.title"} {t c="richEditor.description.paragraphMenu"} {t c="richEditor.description.inlineMenu"} {t c="richEditor.description.embed"}

Explications (1)

  • Explication d'Alloprof

    Explication d'Alloprof

    Cette explication a été donnée par un membre de l'équipe d'Alloprof.

    Options
    Équipe Alloprof • 2a

    Merci pour votre question!


    Un schéma peut aider à visualiser la chose :

    schéma.jpg

    Note : les longueurs des côtés ne sont pas équivalentes aux vraies mesures.


    Il y a deux parcours qui sont de forme rectangulaire, qui, lorsque collés ensemble forment un autre rectangle. Il faut que le produit des deux côtés soit un nombre divisible par 10.


    Comme il n'y a que trois nombres naturels possibles entre 8 et 10, on réalise qu'il n'y a que six options de tailles de rectangle :

    • 8 x 8 = 64

    • 8 x 9 = 72

    • 8 x 10 = 80

    • 9 x 9 = 81

    • 9 x 10 = 90

    • 10 x 10 = 100

    De toutes ces tailles possibles de côté, seulement trois ont un produit qui est divisible par 10 :

    • 8 x 10 = 80

    • 9 x 10 = 90

    • 10 x 10 = 100


    Il y a donc plusieurs options pour la taille de chaque parcours. L'important est que les deux parcours aient les même dimensions et qu'ils forment un rectangle lorsqu'ils sont unis.


    N'hésitez pas si vous avez d'autres questions!

Poser une question