Secondary V • 2yr.
For the problem on top, I don't know how to do c and d. For the one down, I do not know how to even begin.
For the problem on top, I don't know how to do c and d. For the one down, I do not know how to even begin.
Explanation from Alloprof
This Explanation was submitted by a member of the Alloprof team.
Hi !
Let's begin with c :
25000 can be written as 5*5*1000
So log(25000) = log (5*5*1000)
Now you can use one of the laws of logs. In this exercise will use :
Ce contenu est protégé par le droit d'auteur. Toute reproduction à l'extérieur des forums Alloprof est interdite et pourra être considérée comme une violation du droit d'auteur.
So log (5*5*1000) = log(5) + log(5) + log(1000)
Well, we know that log(1000) = 3
So we can rewrite our equation :
log (25000) = 2*log(5) + 3 = 2*v+3
I did all the c with you, but for the d I ll just give you some tips.
tip 1 : rewrite sqrt(1000) as 1000^1/2
tip 2 : use one of the laws of logs
Ce contenu est protégé par le droit d'auteur. Toute reproduction à l'extérieur des forums Alloprof est interdite et pourra être considérée comme une violation du droit d'auteur.
----------------------------------------------------------------
Now for your second exercise.
You have to know that half-life of an isotope means the time taken for the radioactivity of a specified isotope to fall to half its original value.
You have the function :
P(t) = e^(-0.00001*t) and I suppose that p(t) is a proportion.
You have to find the time taken of your isotope to fall to half its original value, so 50%
In other words, you have to isolate t in : P(t) = e^(-0.00001*t)
Have a nice day
KH