On considère la fonction g définie sur $]-1;+\infty[$ par $g(x)=\frac{2x}{1+x}-\ln(1+x)$

l'Etudier les variations de g et démontrer qu'il existe un réel unique α

Tel que $3 < \alpha < 4$ et g(a)=0.

- 2/Tracer la courbe (C) représentative de g dans un plan rapporté à un repère orthonormal.
- 3/Soit $x_0 \in]3; \alpha[$ et M_0 le point de (C) d'abscisse x_0 .
 - a)Ecrire l'équation de la tangente (T) à (C) en Mo.
- b) On désigne par x_1 l'abscisse du point d'intersection de (T) et de l'axe des abscisses. Donner x_1 en fonction de x_0 , $g(x_0)$ et de $g'(x_0)$.
- 4/On considère la fonction h définie sur [3; α] par h(x)= x $\frac{g(x)}{g'(x)}$ Ou g' désigne la fonction dérivée de g.
 - a) Montrer que : $\forall x \in [3; \alpha]$ $h'(x) = \frac{g''(x)g(x)}{[g'(x)]^2}$.
 - b) Calculer g''(x) et en étudier le signe sur l =]3; $\alpha[$. En déduire que h est strictement croissante sur l et que $h(x_0) < \alpha$.
 - c) Montrer que sur [3; α] on a $0 \le h'(x) \le \frac{1}{4}$.
 - 5/Etudier le signe de $h(x) x sur [3; \alpha]$. En déduire que $3 < x_0 < x_1 < \alpha$.
 - 6' On définit la suite (X_n) par son premier terme $X_0 \in]3; \alpha[$ et la relation $X_{n+1} = h(X_n), \forall n \in \mathbb{N}$.
 - a) Démontrer que $3 < X_n < \alpha, \forall n \in \mathbb{N}$.
 - b) Démontrer que la suite (X_n) est strictement croissante.
 - c) Appliquer le théorème des inégalités des accroissements finis à la fonction h sur l'intervalle $[3; \alpha]$ pour montrer que $\forall n \in \mathbb{N}$, $|\alpha X_{n+1}| \leq \frac{1}{4} |\alpha X_n|$.
 - d) Utiliser ce résultat pour montrer que la suite (X_n) est convergente. Quelle est sa limite?
- 7/ Comment faut-il choisir n_0 pour que X_{n_0} soit une valeur approchée de α à 10^{-4} près ?.